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Towards a systematic classification of protein folds
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A lattice model Hamiltonian is suggested for protein structures that can explain the division into structural
fold classes during the folding process. Proteins are described by chains of secondary structure elements, with
the hinges in between being the important degrees of freedom. The protein structures are given a unique name,
which simultaneously represent a linear string of physical coupling constants describing hinge spin interac-
tions. We have defined a metric and a precise distance measure between the fold classes. An automated
procedure is constructed in which any protein structure in the usual protein data base coordinate format can be
transformed into the proposed chain representation. Taking into account hydrophobic forces we have found a
mechanism for the formation of domains with a unique fold containing predicted magic numbers
$4,6,9,12,16,18,...% of secondary structures and multiples of these domains. It is shown that the same magic
numbers are robust and occur as well for packing on other nonclosed packed lattices. We have performed a
statistical analysis of available protein structures and found agreement with the predicted preferred abundances
of proteins with a predicted magic number of secondary structures. Thermodynamic arguments for the in-
creased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high
symmetry phase, theparent structures, between themolten globuleand thenative states. We have made an
exhaustive enumeration of dense lattice animals on a cubic lattice for acceptance numberZ54 andZ55 up to
36 vertices.@S1063-651X~97!04909-X#

PACS number~s!: 87.10.1e, 05.50.1q, 05.70.Ln
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I. INTRODUCTION

In the past 50 years large databases of protein seque
and protein structures have been building up at an expo
tial rate @1#. And, as in the case of, for example, atom
elements or isotope tables, it is natural to ask for some c
sification that can group the proteins into related famil
other than those that arise from homology analysis of
sequence of amino acids in the polypeptide chain. What
have in mind here is a kind of atomistic taxonomy, where
proteins are grouped according to the number of typical
ments.

In the case of the nuclear isotopes the grouping in part
larly stable, closed shells of nucleons came rather late
torically, since it was not obvious that an independe
particle description would make sense in the nucl
interaction picture, and yet magic numbers came out o
fairly simple single-particle force potential. This led to a pr
dicted predominance of abundance of nuclei at magic n
bers of nucleons, in agreement with empirical data. Likew
for our microbiology case we shall show that magic numb
for the stability in the packing of protein structure eleme
are revealed in a calculation based on a simple hydroph
force field model. Proteins appear to be packed like clo
‘‘shells’’ of all connected secondary structure elements. T
purpose of this paper is to provide a paradigm that allo
classification of the proteins in structurally defined familie

Let us briefly list some pertinent features of protein stru
tures and the folding process. Excellent reviews can be fo
in @2# and more details about the experimental facts and
561063-651X/97/56~4!/4497~19!/$10.00
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solved questions are given by, e.g., Jaenicke@3,4# and from a
theoretical point of view by Finkelstein and Ptitsyn@5,6# and
Wolynes@7#.

Proteins are found to be highly hierarchically structure
Pauling and co-workers@8# were the first to emphasize tha
the final, so-callednative structure of proteins consists o
two dominant kinds of building blocks, thea helices and the
b sheets. These are called secondary structures. Later
tional, somewhat less characteristic structural elements w
proposed~i.e., inverse turns andV loops, etc.@9#!. A char-
acteristic feature of proteins is that their observed structu
are densely folded in a complex manner of secondary st
tures and intervening irregular loops@9#. These further form
tertiary structures, which are composed of characteristic
mains with a special fold, which are made up of typica
tens of secondary structures. The domains further s
organize into quartinary structures consisting of several
mains. Dense folding intermediates are observed be
reaching the unique closed packed state@10#.

In aqueous solutions most proteins fold after various
termediate stages@3,4# into closely packed globules, whic
neither dissolve nor phase separate, as most polymers w
do. Dill @11# derived a thermodynamic theory for these a
showed they should have a tendency to fold into lumps
specific size. A main reason for this is the action of t
hydrophobic and hydrophilic forces, which are unspec
interface-tension-like forces@12,13#. Yet, a protein with a
specific amino acid chain folds, paradoxically@14# in a mat-
ter of seconds, to a particularfold, according to information
that must be provided via the underlying linear informati
4497 © 1997 The American Physical Society
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4498 56PER-ANKER LINDGÅRD AND HENRIK BOHR
represented by the specific sequence of amino acids. Fur
more proteins seem to have predominant lengths of
chains. Bermanet al. @15# have made a statistical study o
known proteins and have found that the distribution has ch
acteristic peaks near multiples of chain lengths of 125 am
acids. The total length may go up to a few thousand. Ab
400 distinct structures are known@1# from x-ray crystallog-
raphy for such domains, but only for proteins that form cry
talline structures, i.e., not in the more relevant environme
the natural solution with salty water. These are grouped
a few hundred recognized fold classes. Less detailed st
tural information in the solutions orin vivo are available
from NMR and circular dichroism studies. In total;4000
structures have so far been determined@16#, however, severa
appear to be closely related. On the other hand, well o
hundreds of thousands of proteins have had their sequ
determined@17#. It is of great interest~1! to be able to predict
a structure from the sequence,~2! to be able to classify the
possible structures that can exist, and~3! to understand why
certain structures seem to be particularly abundant. The
of this work is to propose a schematic framework for t
description of the folding of secondary structures into d
mains of proteins and discuss their abundance.

First, consider the simpler crystalline classes of structu
Group theory tells us that there are only 230 different clas
in three dimensions. Many materials assume before t
melt, in spite of the possible diversity, a single open str
ture, the body centered cubic structure bcc, which is st
lized by entropy; see, e.g.,@18#. This is called theparent
phase. At lower temperature the structure transforms by
so-called Martensitic transformation to more closed pac
structures with generally ‘‘triangular’’ coordination betwee
the constituents. There can be several such possibilities,
fcc, dhcp 9-R, 18-R, . . . , however, all are resulting from th
single ‘‘parent’’ bcc phase@19#. The observed, irregular pro
tein structures may correspond to such complicated gro
state configurations, which are the result of the competit
between all relevant forces. It is too complicated to mak
classification for these. However, we demonstrate that
possible that the protein also first forms a high symme
denseparent phasefrom which the actually observed, sti
more closely packed structures are obtained by ‘‘twisting
This is in order to satisfy the short ranged forces between
secondary elements. We shall postulate that a parent pha
an important intermediate phase in the folding process.
this and by considering a rather general three-dimensio
~3D! structural model, our approach differs from the pre
ously forwarded ideas to simplify the description of prote
into ‘‘folding patterns’’ or ‘‘crude structures;’’ see, e.g
Finkelstein and Ptitsyn@5#. Unfortunately the experimenta
structural information, at present, is rather scarce on the
termediate phase@20,21#. However, the presence of interm
diate phases and folding steps is a generic feature of
folding process@3,4# and some steps are described as r
limiting.

In the course of this work we numerically evaluate a
exhaustively count graphs on a simple cubic lattice. This
of general applicability in a class of statistical problems. O
counts are extended to larger lattice animals than hith
considered. Our results agree exactly with those of Chan
Dill @22,23#, where overlap exists. Chan and Dill further d
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a graph theoretical analysis, which is of relevance for
present case as well.

The structure of this paper is as follows. First, we pres
the motivation and prerequisites for setting up a simplifi
model, still containing the pertinent physics and symme
Then we formulate a homology measure, which allows
systematic naming of structures and a distance measure
ing the model we find numerical evidence for magic nu
bers. We perform a statistics of the abundance of secon
structures and of proteins with a certain number of second
structures. We motivate the magic numbers geometrica
Finally in the last section we make a thermodynamic the
for our model that formalizes the discussed folding scena
and gives a thermodynamic motivation for higher abunda
at the magic numbers.

II. CLASSIFICATION OF PROTEINS
INTO FOLD CLASSES

It is important to understand how the proteins can fi
their fold without trying all the statistically possible option
It is generally assumed that the information is coded linea
in terms of the amino acid sequence, giving rise to a natu
tendency for the backbone to fold correctly and fast.
unsolved problem is to demonstrate how the sequence in
mation ~which determines foremost the short range forc
along the backbone and only more indirectly the interactio
between distant parts of the chain! is sufficient to do this. It
is our thesis that the nonlocal forces between distant sect
of the proteins come in at a late stage, only providing
final optimization, and the observed complex irregular a
twisted patterns. The hydrophilic and hydrophobic forc
against the aqueous solution are supposed to be the
driving forces in condensing the proteins from the extend
state. The protein chain has about 50% hydrophobic and
drophilic residues distributed seemingly at random along
chain. An extended chain is, therefore, clearly unfavorab
The optimum is a condensed phase with a minimal surfa
which allows most of the hydrophilic residues to be burie
However, it is not possible for the unspecific hydrophob
forces to define aspecific foldwhen the system is in an
unfolded state. A fold means@24–30# a particular structural
topology that a protein domain can assume in its native st

Proteins appear to belong to families, like plants, w
specific characteristics. The families contain many varia
von Linné @31# in the 18th century succeeded in the field
botany to identify the important classification parameters.
solved the difficulthomologyproblem defining when plants
are the samewithout beingidentical, and when they belong
to the same class or not. It gives a systematic, although
‘‘natural’’ classification from a functional point of view
Here we suggest that the dense fold patterns for proteins
form the basis for a classification, and we shall identify
class of similar folds with a family, as did Chothia@24# ~and
with the qualifications mentioned that the fold classes n
not be the natural families!. By devising a local projection
scheme for systematizing the protein fold on a lattice
propose an effective cut through the homology problem. T
results were briefly discussed previously@32#. Such a sche-
matic structure is a kind of symmetry indicator@33#, which is
useful in statistical analysis of the fold problem. It is we
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known that a global measure for ‘‘similar’’ folds using th
root-mean-square measure~rms! for the coordinates of the
backbones is too strict, and indeed vastly misleading;
e.g., @34#. If just one secondary element is slightly rotate
the rms can become very large; this is not expedient. O
measures, for example, local distance measures, have
been proposed and used@1#. In traditional classification in
physics, as in the periodic table or in the crystal groups
certain capaciousness in the homology concept is nei
needed nor warranted. In the protein folding case, as
botany, it is. Yet the final classification criteria must
unique.

Similar simplifications with idealized elements have p
viously been proposed by Murzin and Finkelstein@35# for
describing the domains ofa helices. They considered thea
helices as cylinders and considered a close packing of t
on edges of polyhedra with triangular faces. They dem
strated a high degree of coordination of the possible and
observed structures, except for bundles of larger number
long helices, which seem to align more in parallel. It is
teresting to note that their structures in all cases can be
garded as twisted structures of a simple parallel bun
Their work describes the number of distinct twists. In t
above crystal analogy, they classify some of the poss
closed packed structures belonging to a single ‘‘cubic’’ p
ent phase. The polyhedron method has the drawback th
does not work forb sheets. However, our cubic represen
tion describes equally well theb sheets and theb sand-
wiches, which are schematized in a different representa
by Finkelstein and Reva@36#.

Recently, even more schematized compact lattice mo
for late stages of protein folding in terms of a chain of inte
acting beads~monomers! have been intensively studied@37–
44#. Secondary structures are very schematically modele
sequences of monomers with a persistence length of tw
more beads, usually on a 33333-bead cube. The mode
proteins are supposed to be refolding and forming the s
ondary structures at the compact folding stage in a search
the minimum of strong interchain interactions~represented
by two or more attractive or repulsive beads, randomly d
tributed!, or for a state of ‘‘minimum frustration’’ as dis
cussed by Wolynes@7#. This approach is very different from
the present case. It is an interesting and useful model in
own right in particular for heteropolymers. It is focused
the difficult problem of describing a frustrated search for
optimum in a rugged energy landscape. That is undoubte
very relevant for proteins too, however, in our model we ta
almost the opposite view and take maximum advantage
proteins’ proven ability to form secondary structures at
early stage.

III. A MODEL HAMILTONIAN FOR PROTEIN FOLDING

In the following we shall construct a minimal model fo
protein folding in order to establish a vocabulary and a l
guage in which the structures can be described and su
quently classified. Summarizing the review of 20 years
protein folding research Jaenicke@4# concludes that the pro
cess can be described as a multiple pathway of seque
folding with roughly three steps:~1! very fast early events
~2! middle events with local shuffling into tertiary structur
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and finally ~3! the late events forming the chemical bon
~disulfide bridges, etc.!. All three steps can be assisted b
other proteins~so-called chaperones! @4#. We shall model
these observations with special emphasis on the sec
stage.

Experimentally the helix structures are usually seen
form in the very early stages of the folding process@4#, al-
though not without exceptions, which indicates that in so
cases the final form of the secondary structures is obtaine
concert with the overall folding@20,21#. The helices are typi-
cally between 4 and 12 amino acids long~see Fig. 6!, which
in fact can be understood on the basis of a simple rand
copolymer model@5#. At relatively high temperatures, i.e
above or at themolten globule state~which is an operationa
term for a rather dense state with pronounced second
structure; see, e.g.,@2#, p. 265! we assume, in agreement wit
Jaenicke’s conclusion, that the protein is substructured
cording to the underlying amino-acid letter code, into tw
groups of secondary structures, as can be seen in the w
known ribbon representations of proteins@45#. One set,
which we denote by capital lettersA,B,C, . . . , represents
the described helices@46# and also potential strands for th
formation ofb sheets. Strictly speaking, the latter cannot
well described at this temperature since their stabilizat
probably requires also the forces between different parts
the protein and not just forces along the backbone. Yet, thb
strands need to be folded into the correct relative position
space. These elements are assumed to be approximatel
ear with a well defined start and end point~amino acid!. The
secondary elements can with quite high confidence be
dicted from the linear sequence information based on
DSSP~definition of secondary structures of proteins! algo-
rithm @47#. The second group consists of the remaining co
necting pieces of the protein, the irregular loops~which have
an average length of 4 residues, Fig. 6!. These can be re
placed by the straight connection line,a,b,c, . . . between
two consecutive secondary elements of the first group. T
all elements can be considered straight. Two elements
connected by a ‘‘hinge,’’ which is characterized by a dire
tion in space, perpendicular to the plane in which the t
joining elements can rotate. The position and action of
hinge are in principle determined by the underlying ami
acid sequence; however, the code is yet to be found by
tistical analysis. Using a spinSi for this description we can
define both the direction and the sense of the bend betw
the two elements. We then make the crucial, simplifyi
assumption that each element is sufficiently rigid to defi
the relative optimum direction of the spins attached to
ends of the element.

Thus the protein is schematized as the sequence of
ondary structures and connections with preferential bend
forces acting between them

aS1AS2bS3BS4cS5CS6d,... . ~1!

It is at this level that we shall attempt to classify the vario
protein foldings. We are now ready to formalize the mode
order to be able to make computer simulations and pre
tions of fold classes. This scheme is not simply a latt
model, and in principle it can be made general with arbitra
angles and lengths. At a later stage we shall include inte
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4500 56PER-ANKER LINDGÅRD AND HENRIK BOHR
tions between the elements of the first groupA,B,C, . . . , in
particular between the potentialb-sheet elements.

A. A fold Hamiltonian with the pertinent symmetry

We need further simplification to get a practical model
fold structure formation. For a statistical description it
probably not important to allow continuous variations in t
possible angles, so we assume only one allowed angle,
the value of the angle is not essential for the argument in
first stage. For ease of representation we choose this t
90° ~later also including the value 0°!. Let us traverse the
protein represented by Eq.~1! from left to right. Each ele-
mentP5A,B,C, . . . has adirection unit vectorêP along one
of the axes in a Cartesian coordinate system. We remark
using simply the direction vectors makes the description
dependent of the lengths of the elements. This is a simp
cation based on the fact that the actual elements have len
of the same order of magnitude; see Fig. 6. It is also in
pendent of the position in space and of interactions betw
the elements apart from direct overlap. Similarly each e
ment p5a,b,c, . . . is characterized byêp. The structure is
given by the sequence of spin vectorsS1 ,S2 ,S3 ,S4 ,... . The
spins have unit lengths and may each point in either of
six directions6x,6y,6z. If we consider only the 90°~and
0°! turns, a unique description for the orientation betwe
two elementsa and A with a hinge spinS1 ~and furtherb
joined by the hinge spinS2! is given by

êA5êa3S11~ êa
•S1!êa,

~2!

êb5êA3S21~ êA
•S2!êA, etc.

It is clear that the fold is uniquely described by the seque
and state of the ‘‘hinge’’ variables, the spinsSi . A given
sequence of spinsSi and the start directionêa is a rigid
building prescription by which any later element directionêi

is exactly determined.
However, this is too strict, and we want just to give buil

ing guidelines. For an element of group one, which may
optimally surrounded by parallel spins (↑A↑), let us say it
gains an energyJ if the spins are parallel, gains nothing
they are perpendicular (↑A→), and pays an energy2J if
the spins are antiparallel (↑A↓). If the spins should have a
right turn we would give an energy gainK for the right turn,
0 for parallel or antiparallel, and2K for the wrong, left
twist. The possibilities are shown in Fig. 1. We can defi
similar energy conditions for elements of group two, w
possibly different, and lower energy valuesj ,k. We then
form a linear chain of these energy variables, describing
preferred state of its surrounding spins, e.g.,

m j mKmkm~2K !m j mJm~2 j !m•••, ~3!

FIG. 1. Definition of the hinge spins and the hinge force para
eters for secondary elements, double line. The definition is an
gous for the intermediate elements, single lines. The drawing i
perspective, all angles represent 90°.
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wherem represents any of the possible six spin directions
the hinge spins. We notice this is a more flexible descript
than Eq.~1!. The structure is now determined by the inte
action constants sequence given in Eq.~3!, as an example, a
j ,K,k,2K, j ,J,2 j ,... . This gives a unique best set of th
spin variablesS1 ,S2 ,S3 ,S4 ,... . From those the ground
state can be constructed from Eq.~2!. If that is all we want,
we could just as well take all constants equal in magnitu
say equal to one, leaving just the signs. This would be a k
of interaction ‘‘spin’’ variables. However, we could als
consider ‘‘wrong’’ folds and then it would be nice to hav
different energy parameters to give us the energy cost
that. A change in a spin (Si) direction at a junctioni has the
dramatic consequence of rotating the entire remaining pie
of the protein around this junction. We shall assume t
there is no inertia and no stearic hindrance in doing so~this
could in fact also be introduced in the model!. Expressed in
another way, we do not care how the system has arrive
any state for which we can measure the energy. This is
sonable when discussing the ground state. In order to be
to describe the energy cost for violating the optimum fold
write the argument as a Hamiltonian:

Hhinge52(
P

~JPSP•SP111KPSP3SP11•êP!

2(
p

~ j pSp•Sp111kpSp3Sp11•êp!. ~4!

We neglect the orientation of the beginning and end loops
Eq. ~4! P52n11 andp52n, where the indexn is running
from n50 to 1

2 (N21), whereN is the number of elements
The constantJP51J or 2J determines the energy for hav
ing the spins at the ends of a group one elementP as parallel
or antiparallel spins in thex, y, or z direction. The constan
KP51K or 2K determines the energy for having the spi
perpendicular or antiperpendicular to each other~right and
left thumb rule!, and similar forj P andkP . To simplify the
notation we shall sometimes write2X5X̄. We have here
disregarded the cases with angle 0°, and cases with the s
along the element direction. The choice number is theref
by constructionZ54, which is the lattice coordination num
ber minus two. One may start by fixing, e.g.,S15 ẑ and
ea5 x̂; the rest then follows from Eq.~2!. For thea helix it is
rather clear that the interaction between the spins will
simply related to the number of amino acids that form t
helix. For a random sequence of the interaction constants
model exhibits known folds among a wealth of other stru
tures such as noncompact, loosely packed structures
structures that are too densely entangled in one another.
can characterize a given fold configuration uniquely by
linear string of coupling constants, which in fact is our sy
tematic name or name for the fold class. As an example,
string j K̄ jK j is our systematic name for a so-called fou
helix bundle protein: 1hmq. It is important to note that there
is rotational invariance of the constantsJ,K, . . . , andthere-
fore of the representation of the proteins by such consta
contrary to a vector representation. As a simple example
have shown in Fig. 1 of Ref.@32# the projection of the 4-a-
helix bundle, which is denoted asj K̄ jK j . The name depend
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o-
in
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56 4501TOWARDS A SYSTEMATIC CLASSIFICATION OF . . .
on the direction in which the chain is traversed, but it
invariant under rotation and translation. Some proteins
‘‘embellished’’ by the addition of several amino acids. Th
focuses on the question of a definition of families and o
metric. We suggest as a measure for closeness betw
classes that two proteins, not necessarily of the same len
have the largest similarity if the overlap in their names
maximal ~see Fig. 2!.

The reduced information in the name giving the spin
rections can be furnished by many amino acid sequen
This provides in fact the basis for the classification, i.
many sequences may have the same fold.

We must also judge energy differences between good
bad folds for the same sequence. We need a simple com
ness measure. On a simple cubic lattice a dense packing
chain can be defined as one in which all vertices have
maximum number of nearest neighbors. This measure
been used earlier by Chan and Dill@22# and Camacho and
Thirumalai @39# ~for the bead model!. Another measure o
optimal packing with respect to the hydrophobic forces a
ing on the secondary structures, which usually have a
dominant hydrophobic side, takes into account that these
to be packed as closely as possible@5#. Then we need a
subset of the above classes~characterized by the interactio
constants! in which the secondary elements in addition ha
as many parallel neighboring elements as possible.

In order to make the classification applicable to act
proteins it is important to have a unique and easy identifi
tion of the class to which any given protein belongs. Sin
the observed low-temperature structures are usually stro
twisted a global projection on a cubic lattice is not meanin
ful. We wish to devise alocal identification method as fol-
lows. Find the unit vectors along the elements. For the lo
this represents the interaction line between two conne
type 1 elements. For any three consecutive unit vectorsê0 ,
ê1 , ê2 the conditionê0•ê2.1/& defines the interaction con
stant for element 1. The sequence information for this e
ment is then reduced to one letter.

B. Distance measures between fold classes

We can define a metric on the space of folds. Firstly, t
folds belong to the same class if their projected paths tra
out by their backbone are identical on the 3D lattice; this
uniquely described by the string of coupling constants~e.g.,
jJkK, etc.!, thus providing the name for the fold class. O
of the key points in this paper is that the rather loose not
of fold classes can now be rigorously characterized by
names defined here. To see that such a characteriz

FIG. 2. Two different proteins, haemarythrin and cytuchrom
b562 belonging to the 4a helix fold class represented as the sam
configuration in the computerized chain link-arrow scheme.
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makes sense we can again take the example of the 4a-helix
bundle fold class and inspect that the different protein
main members have roughly the same name. For exam
haemarythin, tulysozyme, and cytochromeb256 are all given
by the same name (j K̄ jK j ) whereas rice cytochromec
~1CCR! from another fold class also has a different nam
( jKk̄K j ).

An oversimplification of the presented formalism is th
a-helix and b-strand elements are not distinguished. Th
means that at present the helices in the helix bundle class
be replaced byb strands. This can be easily remedied
introducing special interaction parameters for theb strands.
Thus for those we assign instead of6J,6K the different
constants, e.g.,6I ,6H, which gives four more letters in the
alphabet, 12 in all, by which to write the name. The stru
tural restrictions thatb strands are close in space means t
the new letters will not be randomly placed, but more like
be in close groups. A further generalization is to consider
mentioned direct move of two adjacent elements. Since
can happen for both types, we need to introduce both6L
and6l , thus again adding four extra letters to the fold cod
16 in all.

The most systematic way to define a distance betw
fold classes is to use the difference in the names of
classes. For two names withN1 and N2 letters the distance
Dsequence

max can be defined as

Dsequence
max 5N2Nis

max, ~5!

whereNis
max is the number of letters in the maximal identic

sequence~is!, and N5max$N1,N2%. We can also define a
more average distance measure in terms of the sum of
number of matching sequences:

Dsequence
sum 5N2(Nis . ~6!

In the 8-letter code the name of the fold classes for thea-
helix bundle and theb-sandwich plastocyanine will have
certain overlap~due to the fact that helices and strands a
counted the same! and therefore a small distance betwe
them, while the 4-helix bundle and the TIM barrel will hav
a large distance between them~consistent with their grea
differences in size and geometry!. This rough classification is
useful if we are mostly interested in quantifying geometric
and topological~or morphogenetical! aspects of the struc
tures of proteins more than their content. To include the
pect of content we must just use the above defined 12-le
code, which clearly ensures that, with the same measu
now the 4a-helix bundle and the 4b-sandwich belong to very
different classes.

We would like to mention that it is of course possible
translate the interaction constant names into more phon
and pronounceable names. One assignment with obv
mnemonic value is the replacement ofJ,J̄,K,K̄ by back,

f orward, r ight , l eft and j , j̄ ,k,k̄ by i nvert, advance, over, under. It
shows that our interaction constants simply are ‘‘ro
instructions’’ for navigation in 3D space@48#. This analogy
indicates in fact that the choice of the exact cubic latt
with exactly 90° turns is probably not too restrictiv
With this replacement, for example, the 4a-helix bundle be-
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4502 56PER-ANKER LINDGÅRD AND HENRIK BOHR
comes instead ofjK jK̄ j simply ir i l i . There are in all six
different variants with 4a-helices, namely,jK jK̄ j , kJk̄Jk,
jKk̄K j and those with the signs changed on theK and k
parameters corresponding to a reverse fold, where theN and
C termini have been interchanged. With the phonetic nam
these areir i l i , obubo, iruri and i l ir i , ubobu, i lol i .
Besides being mnemonic, they are clearly much easie
comprehend than the interaction constants, although of
same information value. Similar, highly pronouncable a
structured names are found for the larger densely pac
folds @49#, which are far from just a random selection of th
eight letters. Further it is found that the names for very lo
proteins~with, e.g., 35 elements and thus a 33-letter nam!
tend to decompose into a compound of two or more nam
for smaller ones~much as long words in actual languages a
compounded!. This is a sign of the fact that the 3D den
packing tends to favor the formation of subdomains or f
motifs.

IV. NUMERICAL CALCULATION
OF THE FOLD CLASSES

The purpose of the numerical calculation is to find p
cisely how many densely packed configurations of a giv
chain can exist on the 3D regular lattice. From this num
we estimate~1! the number of specific folds and~2! the total
number of possible fold classes,~3! besides gaining statisti
cal knowledge of configurations for~4! a particular number
of elements and lattice sizes. The latter turns out not to
crucial since the statistics of the dense configurations c
verges to the correct value for larger lattices.

Using the fact that the hydrophobic forces condense
proteins and make them contain as little as 3% water@11# in
the native state, we want to find all folds that are se
avoiding and densely packed. The dense packing criteria
have used is a simple count of the neighbors of end point
the elements~vertices!. This does in fact represent the hydr
phobic force faithfully. Firstly, it is unspecific, i.e., indepe
dent of which elements are close to each other. Second
depends on the ‘‘curvature’’ of the confinement appro
mately as a surface tension force, i.e., the different sites
rated 3, 4, 5, and 6 for a corner, edge, face and a buried
respectively. Only the sum counts, in agreement with
nature of the hydrophobic force. One could, in order to
troduce a temperature in the problem, assign energy va
for the mentioned sites. This need not be a linear weight
If the weighting is far from linear one can form other fam
lies of proteins. For example, such that are dissolved in
membranes. Clearly, for those the hydrophobic and hyd
phillic forces act differently. Families could be imagine
with higher choice numberZ or other projected lattices a
discussed in the next section. We have investigated
closed packed folds for the simple cubic lattice case w
Z55. The fact that there may be a range of different famil
does not invalidate our theory for the classification of glob
lar proteins.

Let us now describe how one can calculate numeric
all chain configurations in a given regular lattice setup~with
a given lattice size! and for a chain with a given number o
elements. For mapping out the ground state, it is m
straightforward to operate directly on the element direct
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vectorsêP and êp . We start by placing two perpendicula
elements (a,A) and their spin:ê1

aS1ê2
A . The next element

direction vectorê3
b is then placed in any of the four possib

directions according to the values of the interaction cons
for elementA: 6J, corresponding to an element parallel a
antiparallel toê1

a , and6K corresponding to an element pe
pendicular or antiperpendicular toê1

a . This determines the
direction ofS2 , which is not essential for the ground sta
calculation, since all spins follow the direction dictated
the interaction constants. However, the spins are impor
for the excited states since the spin flips describe the ex
sions from the optimum folds. All the possible positions
the third element are included as long as the element s
within the lattice box and does not collide with the previo
elements. Next, we determine the allowed positions of
fourth element on the chain. We try again all the possi
directions of the fourth element, use those that avoid col
ing with other elements, and stay within the lattice and d
card the others. This procedure is repeated until all the
ments of the chain are positioned and hence we obta
whole set of chain configurations each described by a se
coupling constants~J,K, etc.!. Since distinct configurations
are described by different sets of coupling constants, i
possible to sort the number of chain configurations unique
We vary the initial conditions so that the first two elemen
will be positioned over the entire lattice. The sorting b
names ensures that only ‘‘irreducible’’ configurations, whi
cannot be brought into another by a simple symmetry ope
tion, are counted.~Because we distinguish between the d
rection of traversing the chain we distinguish between
flected configurations and obtain consequently counts
are a factor of two larger than the ‘‘bare’’ dense counts.!

The process is then continued, under the constraint
the path is self-avoiding. To find the dense folds we consi
all configurations in simple confinements, such as those in
l 3m3n box ~notice that our box size indicates the numb

FIG. 3. Full thin line, number of distinct folds for coordinatio
numberZ54, on a cubic lattice in a 23232 box as a function of
number of elementsN; the number in the smaller enclosed box
13131, 23131, and 23231 are also shown. The thin dashe
line is the mean field estimate (Z/e)N. The thick line shows the
number of dense folds.
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56 4503TOWARDS A SYSTEMATIC CLASSIFICATION OF . . .
of elements, so our 23232 box is the same as
33333-bead box!. The dense chain configurations are e
ily derived from the total number of occupied nearest nei
bor sites to any element’s end point on the chain. All t
configurations that fit into a box of a given size are count
This gives a large number of folds, as can be seen on Fig
for a 23232 box ~thin lines for various box sizes! and
shown explicitly in Table I. Next we find among those a
that are densely packed in the sense of having the lar
number of neighbors. This is plotted as the heavy full lin
We notice it is very irregular with dips at numbers we sh
call elemental‘‘magic’’ numbers. Similar dips were found in
a count for the filling of a 2D plane@22,39#. A simple analy-
sis shows that the dips in 3D correspond to~in sequence!
filling a 13131 box at the number of elementsN57, a
23131 box atN511, a 23231 box atN517, and 33
packed 23131 boxes atN523. It is not possible with
Z54 to completely fill a 23232 box. This can be done i
we allow also straight continuation of the elements, i.e.,
ing Z55. The results for the dense foldsZ54 andZ55 are
shown in Fig. 4. The number of folds are much larger in
latter case. A scaling and mean field theory@50# of this prob-
lem gives the estimate that the number of folds forN ele-
ments increases as (Z/e)N, whereZ is the choice number, in
our caseZ54, ande52.7183. For a protein with nine sec
ondary structures and consequently eight interconnec

TABLE I. 23232 box, choice numberZ54 andZ55. Num-
ber of configurations as a function of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors.Ntotal : total
number of configurations. Compare with Tables II and III.

Nelements Ndense(Z54) Ntotal (Z54) Ndense(Z55) Ntotal (Z55)

1 1 1 1 1
2 1 1 1 1
3 1 4 1 6
4 6 15 8 26
5 9 53 12 104
6 8 161 8 372
7 6 444 6 1236
8 24 1100 36 3763
9 76 2590 164 10890

10 84 5560 192 28664
11 48 11412 146 72416
12 120 20384 584 162364
13 722 35280 3984 354036
14 988 52078 6488 674236
15 424 76116 3264 1264156
16 396 90936 5464 2036904
17 172 106728 4220 3267244
18 160 97362 8440 4399672
19 2908 87696 115084 5929000
20 6366 57460 313360 6452560
21 1752 36684 141188 7011716
22 3300 15088 496648 5731068
23 656 5812 316352 4606488
24 848 924 865544 2399816
25 0 0 780624 1128736
26 0 0 206692 206692
-
-

e
.
3,

st
.
l

-

e

g

loop elements we haveN517, and the above theoretica
relation gives the number of folds as (4/e)17;711. This is
already a quite small number. However, the discreten
gives rise tomagic numbers at which there are particular
few, different folds. Although the mean field theory repr
sents the average data well, there are systematic devia
for large N. This is because we have not included clos
folds in very elongated confinements, such as, e.g.
43131 box, which we exclude since they are not ‘‘glob
lar,’’ although they do fulfill the simple neighbor criterion
We have given the exhaustive count of the dense and
total number of configurations for box sizes up to 33232
for Z54 in Table II, and forZ55 in Table III. To obtain the
exhaustive dense count for a certain number of elemen
few numbers have to be added for less globular box s
@51#

In the context of protein folding Dill@11# has analyzed
and found the effective choice number for a typical prote
to be Z<3.8, although this is an average for all residue
Based on this and the above argument@48#, we find that the
simple case we have described withZ54 is in fact the most
relevant for real proteins. From our numerical calculatio
we can then estimate how many distinct fold classes there
to be found. If we, for reasons given in the next paragra
restrict ourselves to domain structures withN<17 we find in
total 3906 possible, distinct globular fold classes. This
close to Chothia’s estimate of 1000, based on the heur
argument@24#. When increasing the number of elements in
domain beyondN517 by just a few the number of possibil
ties increases dramatically. It is interesting that our estim
based on completely different arguments is close
Chothia’s, and reduced from the astronomic numbers
would arise from the most direct enumeration@14#. The fact
that we get a slightly higher value, if significant, could ind
cate that nature may not have used all possibilities availa
by structural ‘‘symmetry’’ during the course of the evolu
tion. We may have to further impose a designability criteri

FIG. 4. The number of distinct dense folds for coordinati
numberZ54 in a 33232 box, fat line. Notice the deep minima a
magic numbers at the closed configurations. Notice the de
minima atelemental magic numbers Nm : 7,11,17,23,31,35, etc. a
the closed configurations; these correspond tosecondary magic
number of elements Ns5(Nm11)/2: 4,6,9,12,16,18, etc. The
dashed line represents the mean field estimate forZ54: (Z/e)N.
The corresponding results forZ55 are shown as the thin an th
dashed-dotted lines.
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4504 56PER-ANKER LINDGÅRD AND HENRIK BOHR
@43,52# or a functional criterion to reduce the number som
what.

We further believe that there is a connection between
simple geometrical ‘‘preferred’’ numbers found in the clo
packings and~1! the breaking up into domains and~2! the
preferred number of residues in protein domains. The lo
minimum atN517, corresponding to nine secondary stru
tures is relatively well pronounced and the next minimum
anomalous. There is also a well pronounced minimum at
magic numberN535. TheN535 structure is confined in a
33232 box. An analysis of the folds shows that a large p

TABLE II. 3 3232 box, choice numberZ54. Number of con-
figurations as a function of number of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors~for the
exhaustive count the numbers in Table IV must be added!. Ntotal :
total number of configurations.Nnn : maximum number of neares
neighbors. The final column shows when particular simple subu
are maximally filled.

Nelements Ndense(Z54) Ntotal (Z54) Nnn Comments

1 1 1 2
2 1 1 4
3 1 4 8
4 6 15 10
5 9 57 14
6 8 207 18
7 6 731 24 13131
8 24 2376 26
9 76 7193 30

10 84 20112 34
11 48 53232 40 23131
12 184 130872 42
13 978 305074 46
14 1312 655566 50
15 602 1349200 56
16 396 2519548 60
17 172 4547644 66 23231
18 616 73391244 68
19 11782 11585834 72
20 19354 16095254 76
21 6972 22105158 82
22 10016 26351888 86
23 3902 31361586 92
24 848 31658298 96 23232a

25 166120 32057672 98
26 478392 26652332 102
27 134136 22350538 108
28 365704 14585004 112
29 105246 9643600 118
30 283660 4535516 122
31 102870 2185692 128
32 1752 629544 134
33 115808 195360 138
34 14016 25460 144
35 5006 5006 150 33232
36 0 0

aIt is not possible to fill the 23232 box with the optimal 26
elements usingZ54.
-

e

al
-
s
e

t

is formed of two folds of theN517 domain interconnected
by just a single element, i.e., 231711535. This explains
why the domain formation is a natural consequence of
discrete packing problem and that the natural choice fo
domain size contains 17 elements, which in turn implie
certain length in terms of residues.

There is experimental support for this, which has be
seen by studying the statistics of the length distribution
protein chains@15# in the databases. Those distributio
show optima in protein length around 125, 250 amino ac
~aa!, etc. for eukaryote and similarly 150 aa and 300 aa
prokaryote. The origin of this remarkable periodicity has y
to be explained in detail. It can have something to do w
the topology of the polypeptide chain in early stages of p

ts

TABLE III. 3 3232 box, choice numberZ55. Number of con-
figurations as a function of number of elements.Ndense: dense con-
figurations with maximum number of nearest neighbors~for the
exhaustive count see@51#!. Ntotal : total number of configurations
Nnn : maximum number of nearest neighbors. The final colu
shows when particular simple subunits are maximally filled.

Nelements Ndense(Z55) Ntotal (Z55) Nnn Comments

1 1 1 2
2 1 1 4
3 1 7 8
4 8 30 10
5 12 142 14
6 8 632 18
7 6 2645 24 13131
8 36 10134 26
9 164 36782 30

10 192 124298 34
11 146 401013 40 23131
12 796 1203304 42
13 5172 3460894 46
14 7696 9150100 50
15 4268 23413384 56
16 5464 54574722 60
17 4220 124465702 66 23231
18 20528 256696224 68
19 286044 523201896 72
20 590112 956157616 76
21 304504 1740791038 82
22 740264 2808524872 86
23 523094 4540269028 92
24 865544 6395425216 96
25 780624 9062517568 102
26 206692 10917458588 108 23232
27 936888 13261852260 110
28 10182968 13192946730 114
29 142150014 13246041324 118
30 18009792 10243424132 124
31 322585300 7986809176 128
32 76012112 4275862868 134
33 711760872 2291702688 138
34 265368752 632026676 144
35 169462384 169462384 150 33232
36 0 0
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56 4505TOWARDS A SYSTEMATIC CLASSIFICATION OF . . .
tein folding @53,54# or the phenomena could be a remanen
of the DNA-RNA structures. Here we propose that the
periodic optima are related to the packing of the polypept
chain at the later stages of protein folding. As to be dem
strated below, the position where the curve in Fig. 4 ha
minimum is a special ‘‘economical’’ configuration for do
main sizes. They are the most common protein domains,
length of which is given by the amount of residues in t
secondary structure~a,b! elements and loops~of length of
around 11-6-4 residues, respectively, Fig. 6!, plus the begin-
ning and end segments. This gives for aN517 element do-
main the following number of residues: for a purea domain
;150 residues and for a pureb domain ;100 residues.
Based on the average size of the elements, the magic n
bers therefore also rationalize why the size of the domain
terms of amino acid units@15# is as preferred by nature. It i
interesting that this number is also in accord with the ove
thermodynamic theory@11# for the effect of hydrophobic
forces acting on a polymer chain.

One might argue that the restriction of the chain to ha
elements being only orthogonal to the preceding one is
limited in the sense that two consecutive parallel eleme
could also be considered and counted for in the total ene
To do that, we may include the following term to the prev
ous Hamiltonian:

Hstraight52(
P

LPêP
•êP112(

p
l pêp

•êp11. ~7!

We have carried out a study where we included the c
with coupling constantsLP andl p . This means that when i
is being decided whether an element is orthogonal to
previous element in the plane (JP , j p) or out of the plane
(KP ,kp) we also include the possibility of the element goi
straight ahead from the previous one. This extra move p
sibility gives rise to a new list of configurations shown
Table III. The possibility of including the straight move
(Z55) gives a much larger set of unique configuratio
However, the behavior exposed in Figs. 3 and 4 of minima
7,11,17, . . . number of elements is still maintained in th
extended numerical calculations~as can be seen by compa
ing Fig. 3 and Fig. 4, forZ54 the magic number dips get
more pronounced in the larger box!.

We have performed a series of calculations for differ
sizes of lattices in order to see the variation in the numbe
different configurations for optimal packing densities for

TABLE IV. Additional dense configurations forZ54 to be
added to Table II for obtaining an exhaustive count. It is aris
from filling the nonglobular boxes indicated.

Nelements 43131 43231 33331 Nnn

19 508 72
25 50318 87558 98
26 83912 169136 102
27 34652 67498 108
28 40404 110468 112
29 19074 45086 118
30 67176 122
31 36430 128
e
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the possible sizes of chains. The numerical calculations
performed as an exhaustive search for all the possible c
figurations. In the table we pay special attention to t
minima occurring at specific chain length and with a ma
mum of neighboring occupied lattice sites that appear in s
cific lattices and reappear in the sublattices contained in
former lattice. For example, the results for the latti
(33232) contain all the minima encountered in the smal
sublattices such as (13131) and (23131). Furthermore
one can make a study of the statistics of optimal pac
configurations for specific chain length as a function of d
ferent lattice sizes. As expected, the number of configu
tions with the magic number of elements for the 13131
lattice will remain the same for all greater lattices.

A. Graphical representations of the protein folds

Basically the philosophy behind our representation
folds is that the 3D protein structures can be represented
unique way by a 1D string of coupling constan
(6J,6K, . . . ). That is a unique name written with an 8
letter alphabet~which we have demonstrated may be e
tended to sixteen or more letters, when including more d
tinguishing features; the minimum is four letters!. It is
independent of rotations and moderate distortions~twists! of
the proteins. We have given the prescription for how that c
be done once the protein is partitioned in secondary struc
elements. Another protein with the same number of eleme
but with a different string representation will have the sa
energy with respect to the hydrophobic forces, but could d
fer with respect to the hinge coupling parameters.

The projection of the actually observed~twisted! struc-
tures to the high symmetry representation can be made
visual inspection of the stereographic pictures. However,
a more systematic approach we have constructed a comp
program that can convert a set of protein coordinates in
PDB ~Protein Data Bank! format into our representation o
ordered chain elements on a regular lattice. The actual st
tures arelocally and consecutivelyrectified to the rectangula
representation. The representation can be given in a
graphical form and yields a systematic name.

V. MAGIC NUMBERS

We now turn to the question of an atomistic grouping
packed structures of protein chains as considered in the
vious section. From an analysis of packing and the effec
hydrophobic forces@12# we shall try to understand the ap
pearance of ‘‘magic numbers’’ and test the paradigm by
statistical analysis of available structural data. Magic nu
bers are well known in graph theory and packing of ha
spheres. For the 2D square lattice the occurrence and
origin of the magic numbers were discussed explicitly
Chan and Dill @22#. Later further studies were performe
@39#. The studies of two-dimensional lattice animals gi
some guidelines for the statistical behavior of proteins, ho
ever, for a property such as magic number it is imperative
study the relevant 3D problem. We argue that the 3D ma
numbers have a profound physical meaning for the prote
The fact that the 2D elemental magic numbers@22# are quite
different from the 3D ones actually corroborates our mod
as will discussed below in Sec. III C. After this paper w

g
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4506 56PER-ANKER LINDGÅRD AND HENRIK BOHR
completed we were notified that 3D counts forZ55 actually
had been made earlier and used to analyze the bead m
@23# for N up 13 and forN527. The results agree in a
details with ours.

The magic numbers found for the 3D lattice animals
not very sensitive to deviations from a linear weighting
the neighbor count, which is still consistent with the globu
structures. The magic numbers in our model areuniversalin
the sense that they do not depend on the specific, chem
interactions between the amino acids: neither between dis
parts of the chain nor along the backbone—they are dicta
by the hydrophobic, confining forces.

Figure 4 shows the exact, exhaustive enumeration of
possible dense folds for elements up toN535 in a 33232
box. For N517 there is a pronounced minimum with on
p(17)5172 distinct and predictable folds. The mean fie
theory, giving 711, overestimates this grossly. Between
magic numbers the abundance is, on the other hand, m
larger. The magic number atN57, corresponding to the 4
helix bundle, is a close packing of a 13131 box, which we
call anA box. The next closed confinement is the 23131
box, which we call aB box. Magic numbers atN511, 17,
23, 32, and 35 can be understood as the optimal packin
closed polyhedra~analogous to shells! consisting of 1, 2, 3,
5, and 6B boxes. The minimum atN524 corresponding to
a best filling of a 4B box is anomalous because the 23232
box cannot be completely filled with the optimal 26 eleme
for Z54. With this in mind the predicted elemental and se
ondary magic numbers are summarized in Fig. 5. ForZ55
the 4 B box can be packed with 26 elements. This wou
correspond to 13 secondary elements.

The magic number folds represent closed confineme
having minimal surfaces and are thus energetically favora
from the point of view of the hydrophobic forces. They ha
a clear energy separation from other, neighboring folds. T
is, according to the theory by Shakhnovich@40#, a necessary
condition for them to be able to fold rapidly~see also@41#!.
The configurational entropy for a fold at the magic numbe
low, and allows the large entropy of the extended chain to
exchanged by energy gain, without significant change in f
energy. This indicates that proteins with the magic num
of elements could be more stable and fast folding than o
ers. In the following we are going to test this by compari
with experimental findings and by thermodynamic analys

A. Statistics of secondary structure abundance in nature

In order to be able to evaluate the relevance of the
merical calculations and compare the computer results w
real protein data we need to perform the statistics of h
many proteins occur with a certain number of second
structure elements. In other words, we would like to see
there has been a selection pressure such that nature
preference for building up proteins of a certain number
helices and strands.

FIG. 5. The predicted magic numbers.
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An important part in getting reliable statistics of occu
rences in genetics and in molecular biology is to get a da
base with no biases, e.g., a group of proteins not contain
a particular amount of a secondary structure. It is theref
most appropriate to resort to data sets that have been sel
especially for a nonbiased content. The data sets used
training and testing neural networks on secondary struc
predictions are convenient since they constitute a stand
reference for the whole molecular biology community.

We have used the standard set of 136 proteins wit
sequence similarity below 25% selected from PDB by R
and Sanders@55#, originally used for secondary structure pr
diction. The secondary structure assignments are made
the DSSP algorithm@47# in which the hydrogen bond poten
tials ~being the physical basis for the secondary struct
stability! are calculated from 3D atomic coordinates. Th
results in assigning a particular type of secondary struc
character to each residue in a given protein, indicating t
the residue participates in that type of structure. Second
structures of a given type are identified as such if they c
tain at least 4 consecutive residues. The decision of h
many residues constitute a secondary structure is crucia
the statistical analysis of the abundance of secondary st
tures. In Fig. 6 we have displayed the size distribution
secondary structures for all known proteins in the compl
PDB database. The helix distribution~a! has its maximum
spread out over a plateau stretching from 4 to 12 residu
theb-strand distribution~b! has a maximum around 3-4 res
dues, and the loops~c! a maximum at 4 residues. This clear
gives support to defining secondary structures as contai
at least 4 consecutive residues. We have also performed
tistics with a definition of helices containing more than
residues as a minimum requirement, but that did not a
significantly the statistics of secondary structure abundan
In making the secondary structure statistics of Fig. 6 we h
counteda-helix and 310-helix assignments as one type an
all b strands as another and then counted them all toget

In Fig. 7 we have displayed the found abundance of
secondary structures as a function of their number on
basis of the Rost and Sanders database@55#. The curve
clearly shows local maxima in the abundance that co
spond to the optimal packing we find theoretically. We fi
optimal abundance at the following number of second
structure elements:Ns54,6,9,16,18, etc. The statistics fo
the higher values is probably not reliable. The numbers c
respond to the number of elements beingNm52Ns21
57,11,17,31,35, . . . . Notice the large coincidences with
elemental magic numbersobtained from our computer stud
ies, Fig. 4. OnlyNs512 is missing, probably because of th
small database used or becauseNs is anomalous forZ54
andNs513 for Z55. The found optima are stable as to wh
size of the database we use; e.g., the first half of the data
has roughly the same distribution as the second half of
set. This means that protein folds with a magic number
elements, and a corresponding magic number of secon
structure elements are more abundant. That again means
the respective fold classes are larger, i.e., are contain
more members.

B. Magic numbers and the Euler characteristics

How can we understand and construct the series of m
numbers for packing of the protein chain? As we have s
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56 4507TOWARDS A SYSTEMATIC CLASSIFICATION OF . . .
the magic numbers of secondary structure elements o
when the number of dense packings has a local minimum
the position of a magic number there is a maximal jump
the total number of closest neighbors around each lattice
occupied by the chain. We shall argue that the magic num
occurs when the chain forms a closed surface~box! within
the lattice. A good example is the 4-helix bundle at t
magic number,Ns54, corresponding toNm52Ns2157
chain elements, which form a closedA box (13131) that
can be embedded in any other larger lattice.

For closed surfaces we have the Euler equation that c
nects the number of cornersc with that of edgese and faces
f . The formula is

FIG. 6. ~a! shows the statistics of the lengths ofa helices,~b!
that of b strands,~c! that for loops obtained by analyzing the com
plete PDB data base.
ur
t

ite
er

n-

x5c2e1 f 5222g, ~8!

whereg is the genus number. We shall in the following on
be considering surfaces with no genus (g50). In case the
total surface of the chain configuration is not closed or
body has buried corners the equation is not fulfilled but
comes instead

x5c2e1 f 5mÞ2, ~9!

wherem is any natural number.
One can get a clue on where magic numbers occur

calculating the density of chain elements through the to
sum nn of the number of nearest neighbors that the e
points of the elements~vertices! on the chain have. At the
magic number the numberm in the Euler equation is two
meaning that the chain configuration makes up a closed
face ~or box!, and the jump in the number of neighbors
optimalDnn56. The next magic number is obtained by ad
ing a new closed box to the other in the lattice and see w
it is filled out by the chain. For the case of theA box alone
theelemental magic numbercan only beNm57, which is the
number of vertices minus one. But in the case of theB box
(23131), which contains theA box two times, we obtain
the next magic number:Nm511. In Table II we show the
explicit number of configurations and the maximum numb
of neighbors.

Let us try to examine in detail the cases where the chai
configured around anA box and then has a few extra ele
ments as shown in Fig. 8. As we saw the elementary box
filled out well by the 4-helix protein chain and satisfied t
Euler condition with 8 corners, 12 edges, and 6 faces. W
an extra element added to these chain configurations we
tain one more corner and one more edge but no extra fa
We can count the extra nearest neighbors as being simply
sum of all the attributes,Dnn512. With two more elements
~see Fig. 8! we have 2 extra corners, 3 extra edges, an
extra face. By adding these extra quantities we get 6 mi
the 2 from the last case, making the extra nearest neigh
Dnn514. By adding one more element we end havi
againDnn514. If we sum up all the corners, edges, a
faces for these cases with extra elements including the e
corners, etc. we cannot satisfy the Euler relation for this

FIG. 7. Statistical abundance of proteins withN secondary
structures@32#.

FIG. 8. This graph shows the increment in the number of nei
bors when adding extra elements to a closed box configuration
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4508 56PER-ANKER LINDGÅRD AND HENRIK BOHR
tended surface structure that is not closed in these case
anticipated above. If we, however, add one more elem
@i.e., all together 4 elements on the ‘‘magic’’ (13131)
box# we end up getting 6 more corners, 8 more edges, an
more faces, which altogether isc512, e520, f 510, which
we see satisfies the Euler relation again. We have arrive
the next magic number configuration of 11 chain eleme
corresponding to 6 secondary structures. Furthermore we
count the extra nearest neighbors obtained by this config
tion as beingDnn516, which is precisely what is observe
in the Table II of the numerical calculation of chain config
rations. Going to the magic number configurations the av
age number of nearest neighbors increases to16 from the
previous configurations with one element less. We h
found a procedure for determining a magic number occ
rence by using the Euler relation and counting the extra c
tent of corners, edges, and faces, which thus gives us
number of nearest neighbors and hence the density of
chain configuration. We can extend this prescription to m
complicated lattice boxes.

For up to 60 elements the magic numbers follow the fi
ing behavior of theB box. That is because anA box can be
placed several ways around a larger box~consisting of 1–12
B boxes!, which increases the number of possible, differe
folds. Without having done the actual numerical enumerat
of folds, we predict—from the fact that 8, 9, and 12B boxes
provide especially closed confinements with maximal nu
ber of neighbors per element and minimal number of fa
per element—that the higher elemental magic numbers m
likely includeNm544, 47, and 59, corresponding toNs522,
24, and 30. However, as we saw for the 4B box the prob-
lems with the actual folding of the chain into the confin
ments may alter the simple estimate somewhat. Further
higher numbers may not be relevant for proteins in view
their tendency to form agglomerates of domains of sma
structures.

In conclusion, the magic number configurations sati
the Euler relation, due to the minimalization of surface a
compared to that of volume. This is due to the hydropho
forces that tend to minimize the number of hydrophobic s
chains on the surface of the chain configuration.

C. Magic numbers and other lattices

Although we have emphasized that the simple cubic
tice sc is the minimal description of the chain of elements
3D space@48#, it is of course not given that nature has r
stricted itself to that, and therefore it is of interest to s
whether the obtained magic numbers are just specific to
discussed sc lattice description. The magic numbers a
because certain closed boxes are singled out as being pa
larly favorable with respect to the hydrophobic forces,
included by the procedure of counting the neighbor. For
simple cubic lattice a magic number configuration is parti
larly favorable relative to the unfolded states, since the ne
est excited state costs 4 neighbor bonds, whereas for
nonmagic configuration the cost is only 2. That gives
important larger energy gap for the magic folds. A mag
fold with N elements is also favored with respect to t
nearby dense folds withN21 andN11 elements, as can b
seen on Fig. 9. This shows that the number of neighbors
as
nt

4

at
ts
an
a-

r-

e
r-
n-
he
he
e

-

t
n

-
s
st

he
f
r

y
a
c
e

t-
n

e
e

se
cu-
s
e
-
r-
he
e

er

elements is consistently higher for the magic folds. The
drophobic forces will thus tend to favor the formation of th
magic number of elements in the molten globule stage, if
element number still fluctuates. Further the degeneracyp(N)
is smallest for the magic number of elements, since b
p(N21) andp(N11) are larger in the number of ways on
can distribute either a missing or an added element.

If we now consider a bcc structure, see Fig. 10, the d
ference between this and the sc structure is that the la
‘‘unit’’ cell is deformed relative to the sc structure and a
extra nearest neighbor bond is formed~dotted line, along a
body diagonal!. The topological difference between a sc a
a bcc structure is simply that for packing on a bcc lattice
in addition allow an element to be placed alongone of the
body diagonals in the sc cell. The choice number is~if we do
not include going back or going straight! Z56. Apart from
the additional possibilities for placing an element, the sa
boxes are preferred as for the sc case, having the m
number of boxes favored by 4 neighbor bonds relative to
excited structure. Since the maximum number of element
a box is given by the number of verticesNv asNm5Nv21,
the magic number of elements of the bcc lattice are ident
to those for the sc lattice. The actual degeneracy numbe
larger:pbcc.psc, due to the larger value ofZ. Another dif-
ference is that for the bcc lattice we do not have as clea
stabilization relative to the neighboring number of elemen
which can be seen on Fig. 10, thin line. This shows o
shoulders instead of clear maxima in the number of nei
bors per element.

FIG. 9. The number of neighbors per element for various nu
ber of elements; fat line: for the simple cubic lattice~sc!, thin line:
same for the bcc lattice.

FIG. 10. Left, simple cubic lattice. Middle, the box squeezed
that an extra nearest neighbor bond appear. This is a represen
of the bcc lattice. Right, the box further squeezed so five ex
neighbor bonds appear. This is a representation of the fcc latti
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56 4509TOWARDS A SYSTEMATIC CLASSIFICATION OF . . .
For a closed packed structure, as for example the fcc,
treatment of the hydrophobic forces~as neighbor count! does
not single out any preferred boxes. The number of neighb
per element increases monotonically as does the numbe
ways to distribute the elements i.e., for the fcc structure
do not find any magic numbers. However, a closed pac
structure is contrary to our picture of the parent phase,
packing on a closed packed structure is therefore not rele
in the present context. Murzin and Finkelstein did consi
the packing on closed packed polyhedra@35#, which is con-
sistent with their attempt to describe the twisted state, n
parent state. As shown in Fig. 10 the topological differen
between a sc and a fcc packing is simply that in the fcc
allow in addition an element to be placed ononebody diag-
onal and onfour face diagonals, and the choice number
Z510. It is now easy to generalize to other equal len
lattices. Only those that are not closed packed are of inte
for forming the parent phase~with respect to the neighbo
count criterion!. For example, for a simple hexagonal crys
the relation to the sc is that in additiontwo opposite face
diagonals are allowed for the placing of the elements,
Z56. It seems that some observed structures are most n
rally described if we occasionally allow elements, in partic
lar loops, to be placed on diagonals. A recent example is
‘‘normal’’ form of the scrapie prion protein. This, accordin
to the model by Huanget al., is a nicely twisted 4a-helix
bundle, which is different from those described in Sec. III
for the sc projection@56#.

Although it goes beyond the scope of the present pape
remark about relaxing the equal length assumption is in o
here. Fora helices andb sheets an almost parallel packin
with small connecting loops is often found; see, e.g., Fig
in Ref. @32# or Fig. 2 in this paper. A packing of a sma
number of secondary elements on a tetragonal lattice
seems to be a more natural choice for a parent state~it leads
to a reduced model also used for the Martensitic transfor
tion @57#!. It is interesting that the magic numbersNs for the
secondary structures remain the same~see a detailed discus
sion in @58#!, as long as the simplification makes sense, a
that they are robust with respect to how the loops are pla
and how long they are.

We conclude that for the packing on lattices for which o
description of the hydrophobic forces in terms of neighb
counting singles out closed boxes, the magic number rem
those we have discussed for the simple cubic lattice. H
ever, the total number of possible structures selected onl
the discussed basis will be higher.

VI. THERMODYNAMIC THEORY
FOR PROTEIN FOLDING

So far we have only used the Hamiltonian Eq.~4! for
enumerating the distinct folds found according to the hyd
phobicity criteria, without explicitly writing down a Hamil-
tonian for the hydrophobic forces. This and the Hamilton
for the short ranged~twist! forces will be discussed in thi
section. First we emphazise that it is likely the protein fo
ing problem is an essential nonequilibrium phenomenon
the thermodynamic sense, and an energy function is o
describing part of the process. Since the dynamically
known time interval is large, ranging from 10210 to 1023 s
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~from either molecular dynamics calculations or expe
ments! a proper theory for the dynamic folding processes
that interval is still far fetched. At most one can make
scenario, the details of which are to be resolved experim
tally or computationally. First, the temperature is not a w
defined concept, and can be replaced by the properties o
solvent; even at room temperature one can fold and un
proteins by varying the amount of denaturants. Howev
with this in mind, let us follow common practice@5,7# and
use the word temperature as indicating a measure for
degree of folding. We envisage the following scenario in li
with recent observations@3,4,20,21#.

At high temperatures the protein will be in anextended
state because of the large phase space for this. When co
down, the protein will start to form thea helices because
there is a clear chemical energy gain by forming hydrog
bonds between every third amino acid, and also a cer
hydrophobic gain because of the contraction.

A. The molten globule and the parent states

The gross partitioning of the chain in secondary and
termediate structural elements is completed at the next s
@4#. Any interaction between the elements is supposed to
switched off by screening effects of the solvent. It is at th
Molten globulestage we introduce our Hamiltonian Eq.~4!
containing the hinge forces. They are of course gener
very weak relative to other forces. How can they matter
the folding process? To demonstrate this, it is instructive
look at the Heisenberg magnet with the Hamiltonian:

HHeisenberg52J
1

2 (̂
i j &
Si•Sj2h(

i
S i

z , ~10!

where the sum is over all nearest neighbor pairs only. T
strong interactionsJ cannot determine the spin direction
the fully rotationally invariant ordered state given by th
dominant first term—but by introducing an infinitesimal fie
h in the z direction the rotational symmetry is broken. It
the weak global force that determines the overall structu
the strong force determines the details. This analogy is
fact deeply related to the present problem.

To see this we write the hydrophobic Hamiltonian as

Hhydrophobic52V
1

2 (̂
i j &

8 s is j2m(
i

s i , ~11!

where the sum is over all nearest neighbor pairs on a~large!
cubic lattice andV is the ~essentially hydrophobic and hy
drogen bonding! energy gain for forming a secondary stru
ture or loop. This appears to be a regular Ising model
terms of the occupation variabless i50 for unoccupied sites
ands i51 for occupied sites. These are describing theN11
vertices or hinge points of a protein consisting ofN ele-
ments. In fact the sites can also be just the location of
residue at which the hinge is going to be, even in the tota
unfolded state. By the chemical potential we may control
fixed occupancy to( is i5N11. The only new feature, indi-
cated by the prime, is that the probability for finding a sta
with differently distributed occupied sites has to be au
mented by the number of ways the points can be conne
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4510 56PER-ANKER LINDGÅRD AND HENRIK BOHR
by a single, self-avoiding line. This Hamiltonian describ
schematically the above scenario for protein folding,
shown on Fig. 11~for N57 with 8 vertices, open circles!.

~1! At T;`: A fully extended state where the potenti
hinge residues are sparsely distributed and no neighbor p
are formed; thus no gain in hydrophobic energy.

~2! At TMG,T,`: The formation of secondary struc
tures in the form of sparsely distributed neighbor pairs.
gain in hydrophobic energy ofV for each formed neares
neighbor pair, representing a secondary or loop element

~3! At T5TMG : The molten globule~MG!, which is here
defined precisely as the stage at which a chain is formed
all connected pairs. The energy gain is at leastNV. It is still
an extended chain of secondary structures and loops, ha
a mean~square! radius of gyration, according to polyme
scaling theory@59# of r G5^Rg

2&1/25aAg
1/2N3/5, wherea is

the average length of an element, andAg~; 1
6 for sc! is the

amplitude. This is nonuniversal. A universal ratio with t
mean square end-to-end distance amplitudeAe is given by
Ag /Ae50.1599~for a comprehensive overview over the st
tistics of self-avoiding random walks, see@60#!. Using this
and ^Re

2& and the estimate from @61# we find

r G; 2
5 @(Z21)/Z# aN1/2. The characteristic size scale is a

cordingly typically 20–30% larger, and the volume is a fe
times larger than that of the closed packed state.

~4! At T5TPA: The precise definition of theparent phase
~PA! at which the chain withN elements forms a densel
packed structure, in our chosen minimal boxes. This s

then hasr G' 1
2 Ra, whereR is the side length of the box

depending on the number of elements~i.e., typicallyR51 to
2 for N57 to 25!. The volume is only a couple of percen
larger than that of the closed packed state. In the prev
sections we have numerically calculated how many ways
points in such a box can be interconnected by a self-avoid
chain ofN elements.

~5! Later we shall describe the Hamiltonian for the tra
sition to the final, closed packed—so-callednative state—
taking place above or around room temperatureTRO.

FIG. 11. A sketch of the five stage folding scenario from~1! the
extended stateat high temperatures to~2! a partly secondary struc
ture forming stage,~3! the molten globule~MG! stage,~4! the par-
ent stage~PA!, and finally thenative, twisted state at about room
temperatureTRO. The double lines indicate formed seconda
structures and single straight lines interconnections formed
loops. Thes indicates the considered eight ‘‘hinge’’ residue po
tions.
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At stage~3! to ~4! each occupied site is a member of tw
pairs and it is meaningful to assign the hinge spin variable
the site, and thus introduce our hinge Hamiltonian, just
the occupied sites. The Hamiltonian Eq.~4! is a discrete one
of the ‘‘Ising’’ type, where the spins can assume up to s
different directions. Further, it is now describing a sm
‘‘cluster’’ of only N21 spins~when neglecting the outer
most ones!. Therefore, there will be no phase transitions
the true thermodynamic sense but rather smooth transit
from one state—or rather stage—to the other. For simplic
in discussion we map the potential native fold~one of the
densely packed states! onto a ferromagnetic Ising chain wit
spin variablesI n . As we have seen, with respect to the dom
nating hydrophobic forces this state is degenerate wit
large numberp5p(N) of other states, which may be thoug
of as p different staggered Ising states for a protein withN
elements. The lowest energy excitation for the chain, w
respect to Eq.~4!, is a soliton mode in which all spins to th
left of one are flipped. This violates the value of only o
letter in the chain~change in sign or type!, whereas a single
spin flip requires change of two bonds. To evaluate the
drophobic energy cost of these excitations~and check that
the chain is still self-avoiding! we construct the site occu
pancy on the basis of the spin sequence Eq.~1! and calculate
the energy from Eq.~11!. The degenerate models all sha
the high energy excitation phase space, the molten glob
However, the low-lying excited states are very different—
particular because a large number of excitations are pro
ited by the nonoverlap constraint for the folds, and the en
gies of extended folds are augmented by hydrophobic
ergy. At moderate temperatures the states are essen
independent and separated by large energy barriers. W
troduce this regime as a new intermediate stage. It is a v
tile, high symmetryparent stage corresponding to the bc
phase. We suppose that the energy cost in violating the d
packingW ~which is of the order ofV! is much larger than
any of the hinge forces. However, a given set of hinge for
~which may include the effect of chaperones! sum up to give
maximum energy gain for~most likely! the potential native
fold. Thep21 other states will have a higher energy acco
ing to how many letters in the name have been violated. T
effect is like that of the uniform fieldh in Eq. ~10!, and it is
not sensitive to whether the hinge forces fit exactly to
final fold. So, without frustration thep-fold hydrophobic
symmetry is broken. This demonstrates a natural relation
tween the sequence information and a preferred folding
the high symmetry fold corresponding to the native one@62#.

B. Transition to the native state

At lower temperatures the folding process proceeds
wards the experimentally observedtwisted, so-called native
structure. Only at this stage is the water supposed to diff
out and leave a problem for the optimization of the sh
range chemical forces between neighboring elements. Th
the problem addressed by Murzin and Finkelstein@35#. To
describe this in our model we need an extra term in
Hamiltonian, just as for the Martensitic problem. Let, as d
scribed above, the parent state be represented by ap-fold
degenerate effective Ising model with interaction parame
W:

y
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Hparent52
1

2
W (

^n,n8&

I nI n8 , ~12!

where I n are the reduced hinge spin variables~giving the
changes relative to one of the consideredp parent ground
state configuration!, and the sum is over all sites in the cha
This schematically represents the hydrophobic forces inc
ing the chain constraint andW ~for water! represents the
energy of the excited states mainly against the hydropho
force. Therefore,W is of the order of a few timesV plus the
contribution from the hinge forces.

The native state is a twisted structure of one of thep
particular states. Suppose it can only be twisted in very
equivalent ways, say 2. Then the native state can be re
sented by a normal transverse Ising model with degenera
and interaction constantU representing the previously ne
glected strong short range forces of chemical nature~disul-
fide bonds, etc.!.

Htwist52
1

2
U (

^P,P8&

sPsP8 , ~13!

where~A! the variablessP could be occupancy variables a
in the Ising model, with valuessP51 or 0 according to
whether twosecondaryelements are parallel, nearest neig
bors yielding an energy gainU, or not ~yielding no energy
gain!; the sum is only over the secondary elements. In
more realistic model for the twist~B! we could allow con-
tinuous variations in the variables and useêP

•êP8 instead of
sPsP8 , which could in turn allow for an energy also by twis
ing perpendicular elements~and possibly even in addition
represent a slight move in space!, yielding a Heisenberg type
model. Presumably, that elaboration will not qualitative
change the results.

To understand the nature of the ‘‘phase transition’’ of t
native folding processes we have to take a closer look at
entropy properties of the system. A very similar model w
introduced and analyzed for the Martensitic problem@57#. It
was recently simplified to two competing Ising models a
further to a so-called degenerate Blume-Emery-Griffi
~DEG-BEG! model@63#. The latter was analyzed using mea

FIG. 12. A sketch of the phase diagram for the protein foldi
Full lines represent continuous transitions~for N→`!, while
dashed lines are discontinuous transitions. Two cases are show
for large values ofp.2, and one with very large values ofp@2.
The entropy contribution depresses the phase separation line
tween the PA and the TW phase, at most for the largep. For a fixed
ration 2W/U;1 there is a transition between the TW, the PA, t
MG and the extended phases. The hatched region, marked HF
dicates structures determined by the hinge forces.
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field theory and Monte Carlo simulations. Values ofp up to
6 were used, since in the Martensitic problem it is hard
imagine higher values. We here generalize the resu
namely, to considering the case of a competition betwee
p-times degenerate Ising model~with a weak field!, and
wherep can be very large, up to several hundred describ
the fold degeneracy of the parent phase—and a transv
Ising model@the above case~A!# describing the twist of one
of those phases. The only difference between the phase
grams for the DEG-BEG model and the competing Isi
models is according to the results of Refs.@57, 64# that in the
latter case, there is a phase transition both between
W-stabilized ~highly degenerate!, as well as between the
U-stabilized phase, and a disordered phase, which in
case corresponds to the molten globule phase. The entrop
thep-fold degenerate phase is according to@63# stabilized by
a term2kBT ln(p) in the free energy, with respect to bot
the disordered phase and the more ordered, twisted p
@65#. The free energies per site in a mean field approximat
are

Fparent52
1

2
WM22kBT ln~p!/N1kBTF S 12M

2 D lnS 12M

2 D
1S 11M

2 D lnS 11M

2 D G ,
F twist5

N21

2N H 2
1

2
Um21kBT@m ln~m!

1~12m!ln~12m!#J , ~14!

where M5^I n& and m5^sn& and the prefactor in the las
term is because we only include interactions between
secondary elements. Because we have mapped~approxi-
mately! the folding problem onto a known problem in stati
tical physics@57,63,64#, we can without repeating the detai
of the derivation draw the schematic phase diagram for
protein fold~Fig. 12!; the transitions across a dashed line a
discontinuous~all or none!. Results of using our Hamiltonian
in Monte Carlo simulations and an analysis of the dynami
folding process after a quench from high to low temperatu
are planned to be published elsewhere.

Depending on the relative strength of the various forc
we then have different scenarios.

~1! If the short range forces are not sufficiently strong
force the energy barrier between the parent state preferre
the hinge forces and another of thep parent states,
2W/U.1, the hinge force selected state will just be op
mally twisted, but highly frustrated and not optimal from th
point of view of the short ranged forces. This will be a sta
arrived at in a nonfrustrated manner, yet it will not be a st
of minimal frustration, and not be in the lowest possib
energy state. This situation is indicated by the hatched
gion, marked HF, in Fig. 12.

~2! If the short range forces are very strong, they c
select the optimal one of thep available dense folds an
overrule the hinge forces, corresponding to 2W/U,1. Then
there is a transition from the parent stage to a twisted s
close to one of thep states accounted for by our theory. Th
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native structure is then given by the detailed interactio
between the secondary elements. This will again neither
minimum frustration nor in a minimum energy state beca
the major structuring was done by the hydrophobic force

~3! If 2W/U;1 there will be a competition between th
two mechanisms. It could of course happen that the mec
nisms during the course of evolution were selected so
both prefer the same state—without a competition. A co
petition would slow down the folding rate considerably. T
insensitiveness to even quite substantial mutations@3,4# ~re-
placements of parts of a sequence! could indicate that there is
not at least strong competition.

~4! If the short range forces are very strong indeed,
strong that they can break up the already formed secon
structures, 2W/U!1, our analysis is less relevant, since t
secondary structure count at the parent stage level may
seriously distorted. This limit is that which may be bett
described by the bead model. The native state for this c
may be one of minimal frustration for all forces, but excee
ingly difficult to find.

C. Preferred abundance of magic number proteins

We have above discussed the last two transiti
molten globule↔parent↔twisted stages in general. Let u
here consider the influence of the degeneracy factorp. We
remark that for smallp, i.e., the magic folds, the magnitud
of U can be smaller~W/U larger! than for the other folds,
and still cause a transition to the native phase forT>TRO.
The value ofW is given by the hydrophobic forces an
should be relatively weakly dependent on the specific
quence constituting the involved elements, since the num
of residues in each element is quite large (;10). On the
other hand the value ofU represents the total effect of th
frustrated short range forces@divided by the number of sec
ondary elements: (N21)/2# between the various parts of th
protein in its twisted, native state. If the magnitude ofU can
be small and still sufficient for ordering at room temperatu
it indicates that the ordering into the native fold is not high
sensitive to finding an optimal solution of the frustratio
problem of matching neighboring sequence segments. M
different sequences can therefore do the job. Contrary to
Martensitic problem the interaction forces between the e
ments are highly frustrated and the energy gain there
limited. We suggest that the elements are predominantly
sitioned by the hydrophobic forces with little chance for m
jor rearrangements in the cases~1! to ~3! discussed above
This would render a state susceptible to only ‘‘local min
mum frustration’’ in terms of the theory discussed
Wolyneset al. @7#.

In other words, we argue that for largep the transition
between the parent phase and the twisted phase~native! will
be depressed in temperature. Then it will require speci
favorable constitutions~i.e., sequences of amino acids! of the
elements to minimize the frustration in their mutual intera
tion, which is needed to stabilize the final twist order abo
room temperature. On the other hand, for the ‘‘magic’’ fol
the restriction is much less severe because herep is rela-
tively small, thus the constitution of the secondary eleme
is less critical and we would expect to have many more p
teins belonging to the magic families. In a search for prot
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structures there is hence a greater chance to find them am
the magic structures than among the few exceptional o
ones. This explains the high abundance of the proteins w
‘‘magic’’ number of ~secondary! elements. The argument
for the preferred abundance are in line with those given
Finkelsteinet al. @52#. But they focus on the ‘‘designability’’
or ‘‘multitude,’’ and show that if a given fold can be made o
many different sequencesM p the abundance is higher, sinc
a largeM p reduces the ‘‘free energy’’ for such a fold by a
entropylike term2T* ln(Mp), where T* is a ‘‘configura-
tional temperature’’; unfortunately neitherM p , nor T* can
be calculated beforehand. That effect may be added~giving
some further sorting! to the presently discussed entropy e
fect, which is arising from the degeneracy in packing of
ements, and which as demonstrated is calculable. Our m
elaborate arguments differ from those of Finkelsteinet al. in
particular with respect to the introduced phase transitio
and in that the temperature in our case is the real tempera
~or reflecting a change in the solvent!.

VII. DISCUSSION

A major asset of our theory is that all involved intera
tions are average quantities and therefore not crucially
pending on specific realizations of sequences. It gives a b
for the classification and for the robustness against m
tions. Further, it rationalizes the paradox that the dir
forces taken one by one are strong, but the effect is sm
~because of cancellation between oppositely acting forc
the frustration!. Our hydrophobic energyV is the average
gain for forming a secondary structure involving of the ord
of ten residues, not for forming individual hydrogen bond
Tanford has discussed the difficulties in evaluating the
ergy cost at that level@12#. It is of course an oversimplifica
tion to assume the same gain when assembling the elem
but it should be of the same order of magnitude. The int
esting hydrophobic forceW is even a further average ofV.
For our ‘‘hinge forces,’’ again, only the sum~or average! is
of importance. Given that the secondary structures canno
broken up totally at the twist stage, also only an average o
the short range interactions resulting inU is of interest. It is
clearly difficult to evaluate the effective interactions fro
first principles. However, the fact that the folding happe
around room temperatureTRO, tells us that the energy scal
of the parameters must be of the order ofERO5kBTRO,
where kB is the Boltzmann constant. This is equivalent
0.60 kcal/mole~at T5300 K!. Suppose then thatW'1ERO
and U'2ERO ~because it may be slightly stronger!. For a
given protein withN elements, the internal energies shou
scale roughly asN times these constants. We can now eva
ate if the configurational entropy we have discussed resul
from the degeneracyp of the parent state can be of an
significance. At room temperature the free energy contri
tion from this entropy isDES(N)52kBTROln@p(N)#. For N
ranging from 7 to 25,p ranges from form 10 to 1000. Thi
gives an entropy contribution of fromDES(N;7)'2ERO to
DES(N;25)'7ERO. In addition there are the variations a
cording to the magic dips inp(N). We find that the entropy
per element is;0.3kB for the magic number folds and
;0.5kB for all others; see Fig. 13. The discussed entro
thus gives an energy contribution of;30%, which is of
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reasonable order of magnitude, and it is sufficient for caus
a significant influence on the phase diagram.

Our models are of course extremely simplified. A ma
objection might be that one cannot strictly substructure
problem in the five stages we have assumed~which on the
other hand seems to be in agreement with a consider
amount of experimental findings according to Jaenick
conclusion @3,4#!. However, we have demonstrated th
within our model it is possible to have several~three! sce-
narios, simply depending on the ratio of the interaction c
stants 2W/U. Of these we believe that the case 2W/U;1
most likely is the one prefered by nature, as it happens in
analogous Martensitic problem. That would give the m
diversified transition scheme with the full sequen
native↔parent↔molten globule↔extended states ~of
which we have not discussed the latter in detail!. We have
argued that the folding problem is a cluster~i.e., a smallN!
problem with no sharp transitions. In a recent study of m
netic relaxation in small Ising clusters@66# it was found that
the transition from one state to another occurred by a nu
ation mechanism, where the relaxation time is depending
the probability of forming a critical size droplet of the alte
native order. A similar behavior is expected for the pres
models, and it is then in accord with the observations that
folding appears to happen in a concerted manner@21#, with
folding happening at several stages simultaneously arou
first forming nucleus. However, our models will not be ab
to account for a scenario in which the folding occurs fro
the extended state directly to the native one only directed
the short ranged forces; this is handled by the bead mod

Finally, let us comment on the terminology problem
the folding intermediates. The experimental identification
a ‘‘compact globule with nativelike secondary structure a
with slowly fluctuating tertiary structure’’ was probably first
mentioned by Dolgikhet al. @10#. The presence of such
state, nearly as compact as the native state, is now e
lished beyond doubt@2#. It corresponds well to our concep
of the parent phase. Our state must be fluctuating sufficie
to experience the entropy in thep possible states, which ar
equally densely packed from the hydrophobic point of vie
In the literature several names have been in use for suc
intermediate state. In particular Ptitsyn has discussed
phase, see, e.g.,@2# p. 265, and calls it a ‘‘native-like molten
globule.’’ The concept of thep-times degeneracy of tha

FIG. 13. The calculated entropy per element arising form
degeneracy of densely packed structures with respect to the hy
phobic forces. Notice the dips at the magic number of element
g
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state is not an element of the Ptitsyn model@2# nor of the
later theory for side chain melting@67#, thereby they differ
significantly from our parent state concept, although they
supposed to be covering the same experimental regime
stronger denaturation Ptitsyn proposed the term ‘‘disorde
molten globule,’’ which would probably then be equivale
to what we have simply termed the molten globule, with
volume about three times the native@68#. Other names and
concepts have been in use, such as folding intermediates
compact denaturated states@69# and others; see, e.g.,@2#.
However, none of the previous models has included
structural degeneracy, which in our theory leads to the ma
numbers. Most of the experimental evidence for such sta
are indirect with respect to the actual structure.

It may not be easy experimentally to structurally asses
the parent structures are stable at higher temperatures
cause the formation of the secondary structures may ten
break up, although in some cases an even higher conte
suggested@2#, p. 249. At the molten globule stage there m
be proteins with an unstable number of secondary struct
‘‘decaying’’ into the stable ones, in quite close analogy
the shell model for nuclear matter.

VIII. CONCLUDING REMARKS

The hydrophobic forces cannot define a particular fo
whereas the weak hinge forces set up a global force that
make a given protein fold predominantly in the right dire
tion. We believe that the proposed Hamiltonian~s! makes
sense in modeling the actual folding process from a cer
stage. In our model we have at first neglected any for
between the secondary elements. This is an important c
ceptual aspect in our model for the not too late stages of
folding process. If specific amino acids on different eleme
could bind strongly it would fix the fold in any arbitrar
configuration~imagine trying to fold double-glue-sided tap
to a specific configuration!. The physical justification for
switching off these forces is that they could be screened
the water, which accordingly must have an important ‘‘lub
cating’’ role to play during the folding. Only in the fina
approach to the dense fold is the water supposed to dif
out and leave a problem for the final optimization of t
short range chemical forces between neighboring eleme
The result of that is undoubtedly the observed twistings a
deformations of the actually observed structures. At t
stage we have argued that the protein cannot make any
nificant refoldings, so most of these forces would be fru
trated if they do not happen to match according to the und
lying sequence. We thus have argued that a match is
instrumental in the folding process, whereby our model
very different from previous theories, which precisely foc
on this problem of frustrating forces, and led to a comparis
between the folding problem and the spin glass problem@7#.
In our model there is no frustration in setting up the ma
part of the folding. The end result will necessarily be fru
trated and therefore the native state is not the ground stat
the chemical forces from an equilibrium thermodynamic
point of view. It is interesting that there seems to exist a cl
of physics problems in complex systems in which ‘‘part
ordering,’’ of which we have discussed a particular case
an important concept, which can be formulated mathem
cally @70#, in more general terms. We emphasize that
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dynamical interpretation of the present model, which is s
ceptible to future experimental tests, is independent of
already experimentally supported structural classification
the native states, discussed in the main part of this pape
would be highly interesting with more experimental inform
tion about the structure in the predictedparentstage.
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@32# P.-A. Lindgård and H. Bohr, Phys. Rev. Lett.77, 779 ~1996!.
@33# An elegant discussion of the symmetry of proteins was writ

by P. G. Wolynes~unpublished!.
@34# G. M. Crippen, inProtein Folds~Ref. @7#!, p. 189.
@35# A. G. Murzin and A. V. Finkelstein, J. Mol. Biol.204, 749

~1988!.
@36# A. V. Finkelstein and B. A. Reva, Nature~London! 351, 497

~1991!.
@37# J. B. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. S

USA 84, 7524~1987!.
@38# M. Sasai and P. G. Wolynes, Phys. Rev. Lett.65, 2740~1990!.
@39# C. J. Camacho and D. Thirumalai, Phys. Rev. Lett.7, 2505

~1993!.
@40# E. Shakhnovich, Phys. Rev. Lett.72, 3907~1994!.
@41# R. A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolyne

Proc. Natl. Acad. Sci. USA89, 4818~1992!; 89, 9029~1992!.
@42# N. D. Socci and J. N. Onuchic, J. Chem. Phys.101, 1519

~1994!.
@43# H. Li, R. Helling, C. Tang, and N. Wingren, Science273, 666

~1996!.
@44# M Cieplak, S. Visveshwara, and J. Banavar, Phys. Rev. L

77, 3681~1996!.
@45# A. M. Lesk, Protein Architecture~Oxford University Press,

Oxford, 1991!.
@46# Nature only usesa-helices with one handedness, therefore

only assign one element to ana helix.
@47# W. Kabsch and C. Sander, Biopolymers22, 2577~1983!.
@48# For a rough navigation on a surface without a specified dir

tion ~north! four direction specifications are usually sufficie
for short trips—with no angles given. A larger number
choices would be confusing and complicating if no lattice
given on which to move. If the length is given by the conte
the absolute minimal number of just two directions is sufficie
~right and left!. With our Hamiltonian Eq.~4! we have gener-
alized this to representing rough navigation in a 3D spa
without specified directions~vertical and north!. Therefore we
believe that the choice of the cubic lattice is the minimal a
natural choice for describing the highly flexible proteins.

@49# For theb-strand constants we could for example use instead
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